
1

Optimized Algorithms for Prediction within
Robotic Tele-Operative Interfaces

Rodney A. Martin1, Kevin R. Wheeler2, Mark B. Allan3, and Vytas
SunSpiral3,4

1 Intelligent Systems Division
NASA Ames Research Center
Mail Stop: 269-1
Moffett Field, CA 94035-1000
rmartin@email.arc.nasa.gov

2 Monterey Bay Aquarium Research Institute
7700 Sandholdt Road
Moss Landing, CA 94039
kevinwheeler@ieee.org

3 QSS Group, Inc.
NASA Ames Research Center
Mail Stop: 269-3
Moffett Field, CA 94035-1000
{mallan,vytas}@email.arc.nasa.gov

4 Formerly published as Thomas Willeke

Summary. Robonaut, the humanoid robot developed at the Dexterous Robotics
Laboratory at NASA Johnson Space Center serves as a testbed for human-robot
collaboration research and development efforts. One of the recent efforts investigates
how adjustable autonomy can provide for a safe and more effective completion of
manipulation-based tasks. A predictive algorithm developed in previous work [9]
was deployed as part of a software interface that can be used for long-distance
tele-operation. In this work, Hidden Markov Models (HMM’s) were trained on data
recorded during tele-operation of basic tasks. In this paper we provide the details
of this algorithm, how to improve upon the methods via optimization, and also
present viable alternatives to the original algorithmic approach. We show that all of
the algorithms presented can be optimized to meet the specifications of the metrics
shown as being useful for measuring the performance of the predictive methods.

1.1 Introduction

Humanoid robotic tele-operation has been shown to be of interest for space-
related applications [1, 3]. NASA’s Robonaut is clearly an excellent platform
for performing human-robot collaboration research, and serves as a testbed
for developing practical capabilities and interfaces. Potentially, a myriad of

2 Rodney A. Martin et. al.

space-based construction and maintenance tasks can be performed remotely
by Robonaut. Manual teleoperation allows for full control over the robot’s
trajectory throughout execution of a task. This is very important from the
standpoint of safety in order for errant execution to be terminated as soon as
possible to prevent damage to expensive equipment, or injury to personnel.
However, tele-operation often incurs much more dedicated time and effort on
the part of the human operator, with the task taking 3 to 4 times longer
on average than if performed at normal human speeds. One reason for the
extended task time is due to the fact the robot is being operated over a
time delay, and it takes time to verify that the commands sent to the robot
are the ones actually being executed. This “bump and wait” approach is
tedious, and adds to the time to perform a task. Furthermore, for safety
considerations, Robonaut’s movement is rate limited, so that any movements
made by the operator must match these rate limitations, naturally causing a
slower execution.

In contrast, we may consider fully automating the operation of the robot,
obviating the need for tele-operation, potentially decreasing the task burden
and time. However, this would require building up a dictionary of commands
based hierarchically upon waypoints to complete a simple task. The scalability
of building such an interface is likely to present a natural practical limitation,
not to mention that operating in a fully autonomous mode prevents human
intervention that is required for safety considerations. As a trade-off to operat-
ing in fully manual or fully autonomous mode, we take advantage of the sliding
scale of adjustable autonomy. By allowing for both a manual tele-operation
phase and an autonomous phase of operation, we can free the operator to
perform other tasks, and mitigate their task burden, while at the same time
retaining the ability to adhere to inherent safety constraints. Scalability is
also certainly an issue for sliding autonomy, and is an open question in the
methods we describe here and in previous work [9]. However, this is a first at-
tempt at optimizing these methods, and this paper is meant to focus on very
simple tasks in order to set a precedent for future work. Increasingly com-
plex tasks may benefit from more advanced probabilistic methods involving
scalable, hierarchical architectures.

As part of the precursor to the work presented here, we have previously
developed predictive techniques and implemented them algorithmically for
use during the manual tele-operation phase [9]. These prediction algorithms
have been designed in a heuristic manner, without explicit optimization of the
desired objectives. Those objectives are as follows:

• Probability of False Alarm – 0 %
• Probability of Missed Detection – Minimize (as low as possible)
• Average time to prediction for correctly classified trials – Minimize (as

early as possible)

Other approaches will be examined as alternatives to prediction algorithms
used in prior work [9]. In our previous work, we have trained and implemented

1 Optimized Algorithms for Prediction 3

Hidden Markov Models (HMMs) for prediction of operator intent using avail-
able data. The intention of the operator is conveyed to the robot via a predic-
tive interface. This predictive interface allows for the tele-operator to execute
remote commands in a completely simulated environment that runs on the
tele-operator’s side of the time delay. The interested reader is referred to [9]
for more detail on this interface. The available data mentioned previously is
collected during the execution of pre-specified tele-operated tasks. This data
is used as input into the selected algorithmic mechanism for predicting the op-
erator’s intention. Results have been shown to be very good in practice, using
learning techniques more sophisticated than originally proposed for Robonaut
[3]. Reports of using the same HMM methodology for gesture recognition are
available in other studies as well [5]. The results we will present are not di-
rectly comparable to those of [5], as we use a different approach in forming
the feature vector used to train the HMM’s, and the application we present
here is for trajectory prediction as opposed to gesture recognition. However,
it is possible to improve upon the results in [9] to more closely achieve the
performance requirements stated above.

Our new, alternative approaches as well as our previously implemented
techniques all have their own nuances and pose unique challenges, yet they
all share a common feature. In each method, there are sufficient available free
parameters that can be optimized to achieve the listed objectives. As such,
our goal is to improve upon previously generated results in order to meet the
performance specifications listed above that define how well we are able to
utilize the sliding scale of adjustable autonomy. In order to make the best use
of the tele-operator’s time, we would like to be able to accurately predict the
task being performed as early as possible into its execution, prior to initiation
of an autonomous action.

The main requirements are based upon error statistics that are normally
used in decision theory, the probability of false alarm and missed detection.
Normally there is an optimal tradeoff between false alarms and missed detec-
tions that can be achieved, where improvement in one metric can be achieved
at the expense of impeding the other. There has been much work in the statis-
tical literature on this topic, and several references are available [8]. However,
for pragmatic purposes, we are also interested in minimizing the average time
to prediction for correctly classified trials.

The experimental setup used in this work will be the same as used in
the previous work. The essence of the task is that the operator is reaching
for a vertically or horizontally oriented handrail mounted on a vertical wall,
prior to placing it in a box. For our experiment, an example of a false alarm
is when the prediction algorithm indicates that the tele-operator is reaching
for the vertical handrail, yet the “ground truth” is that the tele-operator is
reaching for the horizontal one. A missed detection is the case in which the
prediction algorithm fails to recognize that any handrail is being reached for
at all. Minimizing the average time to prediction for correctly classified trials
is important for the purposes of maximizing tele-operator “free time.” That

4 Rodney A. Martin et. al.

is, when the tele-operator grasps the object, this indicates the natural end of
the window of useful time for prediction. For our application, false alarms are
much more critical than missed detections, due to safety considerations. An
autonomous grasp executed erroneously may potentially place the robot or
astronauts working alongside the robot in a hazardous situation.

Using the HMM paradigm, both off-line (static) and on-line/real-time (dy-
namic) validation is performed by recalling on the trained models. “Recall” is
a term that often refers to the use of the Viterbi algorithm [2], and we have
used similar techniques for other applications in the past [10]. The Viterbi
algorithm relies upon having a finite sequence buffer of data to be tested on.
Off-line, or static validation refers to performing recall on a validation set,
using the same sequence buffer segmentation that was used during training,
to gain intuition about real-time performance. During real-time recall of the
models, HMMs trained on both types of tasks (reaching for horizontal or
reaching for vertical handrails) are arbitrated based upon an algorithm to
determine the “winning model,” or which model best describes the streaming
data. Furthermore, a completely different set of data is validated during both
types of recall than is used during training. This is performed by taking all of
the data spanning multiple training sessions and training days, randomizing
and partitioning the complete data set into mutually exclusive training and
validation sets. Both the nature of how the Viterbi algorithm is implemented
and the algorithmic details will be provided in the subsequent section.

The new methods which may allow us to achieve the performance specifi-
cations stated above are by modifying how we perform recall, using judicious
feature selection, and optimizing both static model training and dynamic real-
time recall parameters. In previous work, we used subsets of a POR-based fea-
ture vector. POR stands for Point of Resolution, which is a 4x4 homogeneous
transform matrix representing the commanded position and orientation of
the back of the robot’s hand decomposed into position (x-y-z) and orientation
(roll-pitch-yaw). These feature vectors act as a template to form observation
data sequences used both to train and recall the models. Here, we propose
to either replace or augment these feature vectors with distance data, which
provides the Euclidean distance to target objects. This will potentially add to
the discriminatory ability of recall on the models.

Additional recall algorithms will also be examined, as alternatives to the
Viterbi algorithm. One such algorithm is similarly based on a finite sequence
buffer, however, its classification is based upon posterior probabilities. Regard-
less of the algorithmic method being implemented, there is a unique method
to parameterize this sequence buffer and how to find an optimal design point
for static model training. Finally, we will use the recall method of posterior
probabilities without a sequence buffer, which has unique advantages and dis-
advantages. Because there is no buffer, optimization of this algorithm over
the performance specifications of interest can only be performed over real-
time recall parameters. We will perform dynamic optimization of the other
competing methods as well, where applicable.

1 Optimized Algorithms for Prediction 5

1.2 Methodology

1.2.1 Hidden Markov Model Implementation

Practical implementation of Hidden Markov Models has been covered in depth
in the literature [7]. Here we aim to detail the most relevant facts pertaining to
the nuances that we will exploit and have been presented in previous work [9].
We have chosen to implement a tied-mixture Hidden Markov Model with M =
3 states and N = 6 mixtures. Fig. 1.1 shows the graphical model topology
and relevant parameters for this variant.

Fig. 1.1. Tied Mixture Hidden Markov Model

t ∈ {0, . . . , T} references the discrete-time steps within the sequence buffer,
qt : the state value at time t, wt : the mixture value at time t, yt ∈ Rn :
the observation vector at time t, and n : number of elements in the feature
vector. The HMM parameters which are learned by Baum-Welch iteration,
are grouped together as θ, and are defined as follows:

Prior (initial) probability
distribution : π0

Transition probability matrix : A

⇒ aij = p(qt+1 = j|qt = i)
Mixture weights : B

⇒ bij = p(wt = j|qt = i)
⇒ π0(i) = p(q0 = i)

Mean of Gaussian distribution
for mixture j : µj

Covariance matrix of Gaussian
distribution for mixture j : Σj

6 Rodney A. Martin et. al.

Viterbi-based recall

The Viterbi algorithm uses the idea of dynamic programming in a discrete-
state context, and estimates the best state sequence described by the available
data via the following mathematical formulation:

δT (i) = max
q0,...,qT

P (q0, . . . , qT = i, y0, . . . , yT |θ)

Therefore, δT (i) is the probability that the state sequence ends up in state i
at final time T . The algorithm to solve this optimization problem is recursive
in nature, and the termination step provides us with δ∗T = maxi δT (i), the
maximum probability over the possible state values, i, at the final time in the
sequence buffer, T . The quantity log δ∗T is what we shall use as our primary
indicator of the likelihood that the data being tested obeys the model being
recalled on.

To gain more clarity about the difference between static recall and dynamic
real-time recall, refer to Fig. 1.2 , which shows an example of the y-yaw feature
vector on graphs “g” and “h”. The sequences shown as solid lines are for the
y variable, and dotted lines are for the yaw variable. They represent portions
of validation trials run for a fixed time prior to the time that a handrail is
grasped. The “training” segments are demarcated as starting with circles (◦),
and ending with crosses (×). Because the data displayed in these plots are
validation trials, the training demarcation is for illustrative purposes only.
However, the demarcated portions of the trials indicate the length of the
sequence buffer. When we are performing real-time recall, this buffer acts as
a “sliding window” across the entire length of the trial. We can think about
the demarcated “training” section shown as a snapshot of the sliding window
at some time beyond the start of the trial. This is also the section that most
clearly represents a divergence between the different types of trials.

Fig. 1.2 also illustrates the log δ∗T -based values (g(k, 1) and g(k, 2)) for all
the trials as they are recalled on different models on graphs “a” through “d”.
Trials of type 1 indicate the operator reached for the horizontal handrail, and
trials of type 2 indicate that the operator reached for the vertical handrail.
Because of the “sliding window” used during real-time recall, there should
actually be a second time index to bookkeep the sequence length (T) as well
as the time step (k). Therefore, hereafter we shall refer to the metric log δ∗T
as log δ∗k:k+T .

We elicit as few false alarms as possible based upon the real-time log δ∗k:k+T

results shown in each graph. In order to compute false alarms as well as
missed detections and average time to prediction for correctly classified trials,
we must perform real-time arbitration with the aid of many thresholds. As
shown in graphs “a” through “d” of Fig. 1.2, there is a dashed line indicating
an important threshold. This threshold plays a major part in the heuristically-
driven prediction algorithm, which is outlined as follows:

For each time step k in the streaming real-time data set, perform the
following:

1 Optimized Algorithms for Prediction 7

Fig. 1.2. Y and Yaw validation trials shown with corresponding log δ∗k:k+T and
confidence

1. Compute log δ∗k:k+T based upon the finite sequence length T by using the
Viterbi algorithm (recall).

2. Subtract off model bias from trial:
g(k,m)

4
= log δ∗k:k+T (m)− δm,

where m ∈ M ≡ {Horizontal,Vertical} indexes the model being recalled
on.

3. For the current trial, determine and store the model yielding the maximum
value between the quantities computed in the previous step, i.e. find
m̂ = arg maxm g(k,m).

4. Compute and store the confidence value, c, that indeed m̂ = arg maxm g(k, m).
5. If g(k,m) > Td, check if m̂ = arg maxm g(k, m) from Step 3 references

the same model as it did in the previous time step k. If so, increment a
counter for model m̂, otherwise, reset the counter to 1, for the first count

8 Rodney A. Martin et. al.

of a newly arbitrated m̂. If g(k,m) ≤ Td, reset the counter to 0. Note that
Td is not a model-specific threshold (shown as a dashed line in Fig. 1.2).

6. If the counter for model m̂ exceeds a predetermined number (denoted as
maximum hysteresis count), then use the confidence value computed in
Step 4 for final arbitration.

7. If the confidence value, c, exceeds a predetermined threshold, Tc, then
sound prediction alarm for model m̂.

Step 4 in the algorithm is computed as follows, to yield a number c ∈ [0, 1]:

c =
|g(k,Horizontal)− g(k,Vertical)|

Cs

In the formula above, Cs is the confidence scale parameter. The idea of
the confidence value, c, is to arbitrate between the models by computing
the difference between the horizontal and vertical likelihoods, scaled by a
judiciously selected factor, Cs, that will yield values c ∈ [0, 1]. If c > 1, then
we set c = 1. The confidence values are shown on graphs “e” and “f” in Fig.
1.2, with the corresponding confidence thresholds shown as dashed lines. All
of the thresholds, biases, and scaling constants mentioned thus far for Viterbi
recall are excellent candidates (i.e. “free parameters”) for dynamic threshold
optimization, and will be discussed in depth later.

Notice that in Fig. 1.2, the graphs labelled “b” and “c” have features that
distinguish them from the graphs labelled “a” and “d”. The g(k,m) values
on graphs “b” and “c” appear to rise, then fall with k, whereas the g(k,m)
values on graphs “a” and “d” rise, then settle out above the thresholds for
the most part. This distinguishing characteristic, in addition to the confidence
values, provide the basis for the algorithmic construction outlined above. The
reason for the initial monotonic rise in all graphs labelled “a” through “d”
is due to the use of buffering required by the Viterbi algorithm. The buffer,
{k : k + T}, is initialized with all zeros at first, and then the computation
of the biased likelihood g(k,m) grows monotonically until the buffer is full.
At this point, the buffer slides forward with no leading zeros, allowing for the
algorithmic construct to produce a robust model arbitration. Due to the delay
in waiting for the buffer to fill, using buffer-based algorithms are potentially
slow in meeting one of main performance specifications related to minimizing
average time to prediction for correctly classified trials. Therefore, we will
present an alternative to buffering methods shortly.

Posterior probability-based recall

As an alternative to the Viterbi-based algorithm, we may use part of an al-
gorithm that is traditionally used for inference during the Baum-Welch re-
estimation procedure. Also referred to as the EM algorithm for Estimate (E-
step) and Maximize (M-step), we borrow results from the E-step, in which
inference amounts to computing the posterior probability:

1 Optimized Algorithms for Prediction 9

p(qt|y0, . . . , yt) =
α(qt)∑
qt

α(qt)
=

α(qt)
p(y0, . . . , yt)

Notice that the formula is based upon some new quantities, specifically,
α(qt)

4
= p(y0, . . . , yt, qt). A forwards recursive formula updates α(qt) (α re-

cursion), working only with data up to time t, and as such is real-time in
nature. However, when used for the EM algorithm, this forwards algorithm
complements a backwards recursive algorithm also run as part of the proce-
dure, starting at final time T , and working backwards to time t + 1. This is
called β recursion, where β(qt)

4
= p(yt+1, . . . , yT |qt). Clearly this is performed

off-line in the context of the training that occurs with the EM algorithm. The
details of these recursive formulae and the EM algorithm can be found in the
literature [4, 7].

Due to the nature of α recursion, we can apply the algorithm across the
same buffer of data operated on by the Viterbi algorithm outlined earlier.
The buffer of data will still slide forwards in the same manner, accumulating
new streaming observations with time. However, a major difference between
implementation of the posterior-probability based recall is that the log δ∗k:k+T

metric will be replaced with one that is based upon the state value. Specifically,
at each time instant k, the recursive α formula will be run over the buffer
of data {k : k + T}. Throughout the execution of the algorithm, the state
corresponding to the maximum posterior probability value encountered over
the current contents of the buffer will be stored. Mathematically, this can be
represented as a two-step optimization problem as follows (where t: time in
the buffer):

q̂t = arg max
qt

p(qt|y0, . . . , yt)

p̂t = max
qt

p(qt|y0, . . . , yt)

tbuf = arg max
t

q̂t

q̂tbuf
= max

t
q̂t

The result q̂tbuf
is then compared with canonical state values to determine

the progression of the data through a Markov chain. Because the tied mixture
HMMs are trained as left-right models, the Markov chain should naturally
proceed from the initial state, 1, to the final state, M . These are the “canon-
ical” state values referred to previously. Clearly, they represent a causal link
to progression of the Markov chain, and will aid us in determining the status
and classification of the task at hand. Therefore, we will use the canonical
state values to help with arbitration between models being recalled on differ-
ing trial types. The remainder of the algorithm pertaining to this arbitration
can be summarized as follows:

10 Rodney A. Martin et. al.

1. Check to see if q̂tbuf
is equal to 1 or M , for both models.

2. If, for a particular model, m, the following conditions hold true, then
sound prediction alarm for model m:
a) q̂tbuf

= M for model m.
b) q̂tbuf

= 1 for all models other than m.
c) p̂tbuf

> 0.95.

Notice that there is a condition, p̂tbuf
> 0.95, corresponding to the maxi-

mum posterior probability value encountered over the contents of the buffer.
In order to elicit an alarm, we require that this value be above 0.95. This is
analogous to the confidence value used with Viterbi recall, and could possibly
be used for dynamic threshold optimization. However, due to the nature of
the algorithm’s implicit “max” bias, performing such an optimization may not
be necessary.

Finally, we can also implement real-time recall using posterior probability
computations without the use of a buffer. There are computational advantages
to using this method, in contrast to the previously discussed disadvantages
of using algorithms based upon buffers. As such, we can use a slight mod-
ification of the buffered version of the algorithm. We can now reduce the
mathematical representation of the two-step optimization problem to a single
step optimization problem, as follows (where t: now refers to real-time):

q̂t = arg max
qt

p(qt|y0, . . . , yt)

p̂t = max
qt

p(qt|y0, . . . , yt)

The remainder of the algorithm pertaining to arbitration is very similar,
with only very slight changes summarized as follows:

1. Check to see if q̂t is equal to 1 or M , for both models.
2. If, for a particular model, m, the following conditions hold true, then

sound prediction alarm for model m:
a) q̂t = M for model m.
b) p̂t > 0.95.

Because this algorithm requires no buffering, there is hence no need for
static optimization, and dynamic optimization is very computationally effi-
cient. The optimization parameter is the confidence threshold, shown in the
algorithmic summary above as 0.95. Previously, we hypothesized that the
buffered version of the algorithm may exhibit very little sensitivity to this
threshold. Although this is still the case when using the non-buffered method,
marginal improvements in average time to prediction for correctly classified
trials can be claimed by performing the dynamic optimization. Fig. 1.3 illus-
trates the striking transition of posterior probabilities for the final state only,
i.e. p(qt|y0, . . . , yt) shown for i = M , for models recalling on trials of the same

1 Optimized Algorithms for Prediction 11

type. For correctly classified trials, the state transition occurs very rapidly, in
contrast to the rather slow transition of the log δ∗k:k+T metric shown in Fig.
1.2.

For certain trials, the posterior probability reverts back to a very small
value just prior to grasp. This aberration would give us pause if the nature
of the algorithm were to alarm based upon continuous observation. However,
because our goal is to classify correctly as soon as possible, once the classifi-
cation is performed and the alarm is triggered due to arbitration, there is no
further need for monitoring the posterior values. This is especially true due to
the fact that an optimal alarm triggered to initiate autonomous action moves
us further along the sliding scale of autonomy than continuous monitoring of
confidence values within the predictive interface as in [9].

Fig. 1.3. Y and Yaw validation trials shown with corresponding posterior proba-
bilities, p(qt|y0, . . . , yt)

As mentioned before, only marginal improvements may be achieved by
performing dynamic optimization over the confidence threshold for real-time
non-buffered posterior probability-based recall. As seems clear by examin-
ing Fig. 1.3, using the transition to the final state as a fundamental part of
the algorithm, and optimizing to obtain marginal improvements may not be
the optimal solution to our problem. Further improvements may be made by

12 Rodney A. Martin et. al.

making use of some weighted combination of the posterior probability over
all states as it exceeds some predetermined threshold. This intuitive concept
can be formalized in the roots of decision theory, and may be investigated in
future work.

1.2.2 Optimization Methods

In order to find the optimal model training parameters when using a sequence
buffer, the buffer can be parameterized to incur the fewest number of errors.
As shown in Fig. 1.2, we have a fixed sequence buffer, which can be parame-
terized by the time prior to grasp and the sequence buffer length. Because we
are interested in the fewest errors and maximizing the time before grasp, we
propose this parametrization as an anecdote. In essence, this can be thought
of as a “static optimization,” where the cost function being optimized is the
sum of the off-diagonals of the confusion matrix, M, which quantify the errors
(false alarms) accumulated during static validation. As such, it can be plotted
as a function of the two optimization parameters via a simple two-dimensional
grid search to see if there are any global or local minima. We will provide these
illustrations in the results section.

Clearly, there is no closed-form solution for this optimization problem since
M(λs) is based upon empirical evidence, where λs is a vector containing the
optimization parameters defined previously. Therefore, we can determine the
optimal design points from the plots mentioned above. Our goal is to find
the region of the parameter space that incurs no errors, but is constrained to
having a maximum time before grasp (related to one of our performance spec-
ifications), and smallest possible sequence buffer length. The latter constraint
is imposed because smaller sequence buffers allow for more “sliding window”
time during real-time recall so that there is more time for correct arbitration
between models.

The real-time recall thresholds can also be optimized, but in a formal
manner, based upon the metrics previously introduced as performance speci-
fications. Therefore, we may pose a “dynamic” optimization problem. In this
case, there are three competing objectives, and the goal is to determine the op-
timization parameters that provide an optimal tradeoff among them. Whether
using the Viterbi or the posterior-based recall method, we shall denote the
vector of thresholds being optimized as λd. In the case of the Viterbi re-
call method, λd contains the following thresholds and other recall parame-
ters: δm,∀m ∈ M (model biases), Td, the detection threshold against which
we compare the log likelihood values g(k,m) of both models, the maximum
hysteresis count, Ch, the confidence threshold, Tc, and the confidence scale
parameter, Cs.

Therefore, λd
T =

[
δ1 δ2 Td Ch Tc Cs

]
. For the posterior-based recall

methods, λd = Tc, whether buffered or non-buffered techniques are being
used. There are several optimization methods to choose from, but as first
step, we focus on a simple one which will solve the problem posed as follows:

1 Optimized Algorithms for Prediction 13

Solve arg min
λd

wT x(λd)

where wT =
[
1 1 1

]
and xT (λd) =

[
Pmd(λd) Pfa(λd) tp(λd)

]
tp(λd) =

tc(λd)
tc(λd) + tg(λd)

Pmd(λd) and Pfa(λd), are the probability of missed detection and false
alarm, respectively. tp(λd) is the scaled average time to prediction for cor-
rectly classified trials, computed as shown above, where tc(λd) is the average
time to prediction for correct trials, and tg(λd) is the average “free time,” or
time before the grasp for correct trials. In this way, tp(λd) ∈ [0, 1], and can be
directly compared to the other competing objectives Pmd(λd) and Pfa(λd),
which are also ∈ [0, 1]. It should be evident at this point that our cost func-
tion is essentially an equally weighted sum of all of the competing objectives.
This method of solving a multi-objective optimization problem is a common
approach, but suffers from having to make judicious selection of the weights,
w. However, it can easily be posed as an unconstrained nonlinear optimiza-
tion problem, where a simplex method [6] can be implemented. Although we
cannot visualize the results for the Viterbi recall method due to optimization
over a high dimensional space, it will be shown that the optimization routine
converges to a local minimum for a particular set of initial conditions in the
subsequent section.

1.3 Results

1.3.1 Static Optimization

An optimal design point can be found for static validation when using the
y and yaw, POR-based feature vector. This design point reflects the best
parametrization of the training segmentation for data used to train HMMs,
using the Viterbi recall method. Shown in Fig. 1.4 is the sum of the off-
diagonals of the confusion matrix, M(λs), as a function of the optimization
parameters (λs): the time prior to grasp and the sequence buffer length.

Both the 3D and the contour plot view are given in Fig. 1.4. It is clear
that there is an area corresponding to a large accumulation of errors, for
large times from grasp and small sequence lengths. Recall that our goal for
static optimization is to find the region of the parameter space that incurs
no errors, but is constrained to having a maximum time before grasp, and
smallest possible sequence buffer length. As such, we have a conflict of interest
between our goal and the constraints. However there is enough area in the
parameter space where there is negligible error accrual to accommodate our

14 Rodney A. Martin et. al.

Fig. 1.4. Optimal Design Point for Y and Yaw Feature Vector, Viterbi Method

requirements. The optimal design point has been marked with an asterisk (∗)
on the contour plot, for an optimal time from grasp of 11.3 sec and a sequence
buffer length of 4 sec.

Similar contour plots can be constructed for other cases of interest, i.e.
when using other feature vectors, and for the posterior method, when using
buffering. Static optimization clearly does not apply to the non-buffered pos-
terior method, because there is no buffer that can be optimally parameterized.
A combination feature vector based on y-yaw and scaled distance data is stud-
ied as well as the POR-based one (y-yaw). For the Viterbi recall method, the

1 Optimized Algorithms for Prediction 15

contour plots providing the static optimization results for the combination
feature vector is very similar to the one shown in Fig. 1.4. However, using the
posterior (buffered) recall method results in a significant difference. For all
feature vectors and methods, the optimal time prior to grasp can be set to
11.3 sec. The optimal sequence buffer length ranges between 4 and 7.53 sec,
depending on the feature vector and recall method used.

1.3.2 Dynamic Threshold Optimization

The results for dynamic threshold optimization provided in this subsection
pertain only to the combination POR-based (y-yaw)/scaled distance feature
vector. This feature vector exhibits the most robust behavior with respect to
random variations of the training/validation segmentation. For this feature
vector, the results provide us with solid evidence that optimization yields
substantial improvements, particularly when testing the Viterbi recall method.
We see great reduction in average time to prediction, at the expense of a
slight increase in the probability of missed detection. For the posterior recall
methods, however, we see that the improvements are only marginal.

Therefore, for the posterior recall method, the truly effective steps in the
optimization procedure come from static optimization. However, as stated
earlier, the arbitration and machinery behind the posterior recall algorithms
may not be the optimal solution to the problem of minimizing average time to
prediction, as well as adhering to the other performance specifications. Fur-
ther improvements may be made by making use of some weighted combination
of the posterior probability over all states as it exceeds some predetermined
threshold, in attempt to improve the performance of the algorithm. Table 1.1
summarizes the results of the different methods and metrics. For the posterior
method the (b) annotation refers to the buffered method, and the (n) annota-
tion refers to the non-buffered method. For the Viterbi method, the two rows
are shown correspond to two different optimization initializations with varied
results.

Table 1.1. Optimization Results

Method tc Pfa Pmd

Viterbi 6.51 sec 0% 2%

Viterbi 7.99 sec 0% 0%

Posterior (b) 8.75 sec 0% 0%

Posterior (n) 7.95 sec 0% 0%

Out of all of the cases investigated, there is no clear “winner,” with regards
to the recall method. However, we can conclude that the combination feature
vector provides us with the most desirable solution. As expressed in previous
work [9], it is possible to shave more time off of the average time to prediction

16 Rodney A. Martin et. al.

by allowing for some missed detections. We can achieve an average time to
prediction as low as 6.5 sec if we allow a 2% probability of missed detection, for
the Viterbi recall method. However, if we desire a zero missed detection and
zero false alarm probability, the best we can do on average time to prediction
is 7.95 sec, for the posterior recall method (non-buffered).

1.4 Conclusion

In summary, we can meet the requirements set by our performance specifica-
tions by choosing any of the appropriate recall methods that provide for it.
Furthermore, depending on how strict the performance requirements are set,
we can trade off minimizing the probability of missed detection for further
reduction in the average time to prediction for correctly classified trials. Fu-
ture work should include exploration of alternative optimization techniques,
and ways to enhance the posterior recall method based upon more rigorous
decision theoretic concepts.

References

1. W. Bluethmann, R. O. Ambrose, M. A. Diftler, S. Askew, E. Huber, M. Goza,
F. Rehnmark, C. Lovchik, and D. Magruder. Robonaut: A robot designed to
work with humans in space. Autonomous Robots, 14(2-3):179–198, 2003.

2. G. D. Forney. The viterbi algorithm. Proceedings of The IEEE, 61(3):268–278,
1973.

3. R. A. P. II, C. L. Campbell, W. Bluethmann, and E. Huber. Robonaut task
learning through teleoperation. In ICRA, pages 2806–2811. IEEE, IEEE, 2003.

4. M. I. Jordan. An introduction to probabilistic graphical models. Manuscript
used for Class Notes of CS281A at UC Berkeley, Fall 2002.

5. I.-C. Kim and S.-I. Chien. Analysis of 3D hand trajectory gestures using stroke-
based composite hidden markov models. Applied Intelligence, 15(2):131–143,
2001.

6. J. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1965.

7. L. R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Preceedings of the IEEE, pages 267–296, 1990.

8. H. L. VanTrees. Detection, estimation, and modulation theory. J. Wiley, 1992.
9. K. Wheeler, R. A. Martin, V. SunSpiral, and M. Allan. Predictive interfaces

for long-distance tele-operations. In 8th International Symposium on Artificial
Intelligence, Robotics and Automation in Space, Munich, Germany, September
2005.

10. K. R. Wheeler and C. C. Jorgensen. Gestures as input: Neuroelectric joysticks
and keyboards. IEEE Pervasive Computing, 2(2):56–61, 2003.

